skip to main content


Search for: All records

Creators/Authors contains: "Goodson, Boyd M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 9, 2024
  2. Hyperpolarization of 13 C-pyruvate via Signal Amplificaton By Reversibble Exchange (SABRE) is an important recent discovery because of both the relative simplicity of hyperpolarization and the central biological relevance of pyruvate as a biomolecular probe for in vitro or in vivo studies. Here, we analyze the [1,2- 13 C 2 ]pyruvate-SABRE spin system and its field dependence theoretically and experimentally. We provide first-principles analysis of the governing 4-spin dihydride- 13 C 2 Hamiltonian and numerical spin dynamics simulations of the 7-spin dihydride- 13 C 2 –CH 3 system. The analytical and the numerical results are compared to matching systematic experiments. With these methods we unravel the observed spin state mixing of singlet states and triplet states at microTesla fields and we also analyze the dynamics during transfer from micro-Tesla field to high field for detection to understand the resulting spectra from the [1,2- 13 C 2 ]pyruvate-SABRE system. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. Free, publicly-accessible full text available September 1, 2024
  6. Efficient 13C hyperpolarization of ketoisocaproate is demonstrated in natural isotopic abundance and [1-13C]enriched forms via SABRE-SHEATH (Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei). Parahydrogen, as the source of nuclear spin order, and ketoisocaproate undergo simultaneous chemical exchange with an Ir-IMes-based hexacoordinate complex in CD3OD. SABRE-SHEATH enables spontaneous polarization transfer from parahydrogen-derived hydrides to the 13C nucleus of transiently bound ketoisocaproate. 13C polarization values of up to 18% are achieved at the 1-13C site in 1 min in the liquid state at 30 mM substrate concentration. The efficient polarization build-up becomes possible due to favorable relaxation dynamics. Specifically, the exponential build-up time constant (14.3 ± 0.6 s) is substantially lower than the corresponding polarization decay time constant (22.8 ± 1.2 s) at the optimum polarization transfer field (0.4 microtesla) and temperature (10 °C). The experiments with natural abundance ketoisocaproate revealed polarization level on the 13C-2 site of less than 1%—i.e., one order of magnitude lower than that of the 1-13C site—which is only partially due to more-efficient relaxation dynamics in sub-microtesla fields. We rationalize the overall much lower 13C-2 polarization efficiency in part by less favorable catalyst-binding dynamics of the C-2 site. Pilot SABRE experiments at pH 4.0 (acidified sample) versus pH 6.1 (unaltered sodium [1-13C]ketoisocaproate) reveal substantial modulation of SABRE-SHEATH processes by pH, warranting future systematic pH titration studies of ketoisocaproate, as well as other structurally similar ketocarboxylate motifs including pyruvate and alpha-ketoglutarate, with the overarching goal of maximizing 13C polarization levels in these potent molecular probes. Finally, we also report on the pilot post-mortem use of HP [1-13C]ketoisocaproate in a euthanized mouse, demonstrating that SABRE-hyperpolarized 13C contrast agents hold promise for future metabolic studies. 
    more » « less
  7. The present work investigates the potential for enhancing the NMR signals of DNA nucleobases by parahydrogen-based hyperpolarization. Signal amplification by reversible exchange (SABRE) and SABRE in Shield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) of selected DNA nucleobases is demonstrated with the enhancement (ε) of 1H, 15N, and/or 13C spins in 3-methyladenine, cytosine, and 6-O-guanine. Solutions of the standard SABRE homogenous catalyst Ir(1,5-cyclooctadeine)(1,3-bis(2,4,6-trimethylphenyl)imidazolium)Cl (“IrIMes”) and a given nucleobase in deuterated ethanol/water solutions yielded low 1H ε values (≤10), likely reflecting weak catalyst binding. However, we achieved natural-abundance enhancement of 15N signals for 3-methyladenine of ~3300 and ~1900 for the imidazole ring nitrogen atoms. 1H and 15N 3-methyladenine studies revealed that methylation of adenine affords preferential binding of the imidazole ring over the pyrimidine ring. Interestingly, signal enhancements (ε~240) of both 15N atoms for doubly labelled cytosine reveal the preferential binding of specific tautomer(s), thus giving insight into the matching of polarization-transfer and tautomerization time scales. 13C enhancements of up to nearly 50-fold were also obtained for this cytosine isotopomer. These efforts may enable the future investigation of processes underlying cellular function and/or dysfunction, including how DNA nucleobase tautomerization influences mismatching in base-pairing. 
    more » « less